Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding
نویسندگان
چکیده
The role of the primary cilium in key signaling pathways depends on dynamic regulation of ciliary membrane protein composition, yet we know little about the motors or membrane events that regulate ciliary membrane protein trafficking in existing organelles. Recently, we showed that cilium-generated signaling in Chlamydomonas induced rapid, anterograde IFT-independent, cytoplasmic microtubule-dependent redistribution of the membrane polypeptide, SAG1-C65, from the plasma membrane to the periciliary region and the ciliary membrane. Here, we report that the retrograde IFT motor, cytoplasmic dynein 1b, is required in the cytoplasm for this rapid redistribution. Furthermore, signaling-induced trafficking of SAG1-C65 into cilia is unidirectional and the entire complement of cellular SAG1-C65 is shed during signaling and can be recovered in the form of ciliary ectosomes that retain signal-inducing activity. Thus, during signaling, cells regulate ciliary membrane protein composition through cytoplasmic action of the retrograde IFT motor and shedding of ciliary ectosomes.
منابع مشابه
RETRACTED: Agonist-Induced GPCR Shedding from the Ciliary Surface Is Dependent on ESCRT-III and VPS4
BACKGROUND Membrane trafficking of G protein-coupled receptors (GPCRs) is crucial for temporal and spatial control of cell-surface GPCR signaling. Receptor internalization is a well-documented method cells use for regulating a wide variety of GPCRs following their exposure to agonists. RESULTS We report that, upon agonist stimulation, a GPCR called vasoactive intestinal peptide receptor 2 (VP...
متن کاملIntraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein–coupled receptors
Cilia serve as cellular antennae where proteins involved in sensory and developmental signaling, including G protein-coupled receptors (GPCRs), are specifically localized. Intraflagellar transport (IFT)-A and -B complexes mediate retrograde and anterograde ciliary protein trafficking, respectively. Using a visible immunoprecipitation assay to detect protein-protein interactions, we show that th...
متن کاملCiliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46–IFT56 as well as on its nuclear localization signal
Cilia function as cellular antennae to sense and transduce extracellular signals. A number of proteins are specifically localized in cilia. Anterograde and retrograde ciliary protein trafficking are mediated by the IFT-B and IFT-A complexes in concert with kinesin-2 and dynein-2 motors, respectively. However, the role of KIF17, a homodimeric kinesin-2 protein, in protein trafficking has not bee...
متن کاملBBS1 is involved in retrograde trafficking of ciliary GPCRs in the context of the BBSome complex
Protein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery composed of large protein complexes. The BBSome consists of eight BBS proteins encoded by causative genes of Bardet-Biedl syndrome (BBS), and has been implicated in the trafficking of ciliary membrane proteins, including G protein-coupled receptors (GPCRs), by connecting the IFT machinery to cargo GPCRs...
متن کاملRegulation of ciliary retrograde protein trafficking by the Joubert syndrome proteins ARL13B and INPP5E.
ARL13B (a small GTPase) and INPP5E (a phosphoinositide 5-phosphatase) are ciliary proteins encoded by causative genes of Joubert syndrome. We here showed, by taking advantage of a visible immunoprecipitation assay, that ARL13B interacts with the IFT46 -: IFT56 (IFT56 is also known as TTC26) dimer of the intraflagellar transport (IFT)-B complex, which mediates anterograde ciliary protein traffic...
متن کامل